

Central Limit Theorem $(c<T)$

* Describes the sampling distribution of \hat{p} : (graph of all the possible p) CLT says the samp.dist-w:ll be: $\frac{\text { ex: }}{n=25}$
- shape: approx.normal if (n is large) condition c

- center: mean of $\hat{p}=\mu_{\hat{p}}=p \quad \begin{array}{lll}25(.45) \geqslant 10 & 25(1-.45) \geqslant 0 \\ 11.25 \geqslant 10 & 3.75 \geqslant 10\end{array}$

$$
\mu_{p}=.45
$$

- spread: St. der. of $\hat{p}=\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$

$13-3$
$n=124$
a) param. $p=1 / 2$
b)

$$
\begin{array}{rll}
\text { CLTapplies? } n p \geqslant 10 \text { Anp } & n(1-p) \geq 10 \\
\text { Tes, nis } & n(124(.5) \geqslant 10 & 124(1-.5) \geq 10 \\
\text { large } \rightarrow 124 \\
& \checkmark 62 \geqslant 10 & \checkmark 62 \geq 10
\end{array}
$$

Shape: a pprox.normal
spread: St. dev. of $\hat{p}=\sqrt{\frac{5(1-5)}{124}}=.0449$
c)
d) $\vec{P}=\frac{80}{124}=.645$
e). 645 not on hist.

$$
\text { Yes } \rightarrow \text { very surprising }
$$

$$
z=\frac{x-M}{T} z^{T}=\frac{-645-5}{.0449}=3.23
$$

$$
13-2
$$

Central Limit Theorem (CL)
Describes the sampling distribution:
Describes

$$
\begin{aligned}
& n=25 \\
& p^{=}=45
\end{aligned}
$$

Shape: approx.normal if $n p \geq \frac{(\text { conditions) }}{10 \text { AND n }(1-p) \geq 10}$

spread:

$$
\text { mean of all } \hat{p}=P
$$

$$
25(.45) \geq 10 \quad 25(1-.45) \geq 10
$$

$$
\left(\mu_{p}=.45\right)^{p}=p
$$

$$
11.25 \geq 10 \quad 13.75 \geq 10
$$

$\rightarrow n$ is large enough

$$
\text { St. der.of all } \widehat{p}
$$

$$
\begin{aligned}
& =\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}} \\
& =\sqrt{\frac{M 5(1-4 n)}{2,}}=.0995
\end{aligned}
$$

95% of \widehat{p} should
fall between what?
st. den

$$
.45 \pm 2(.0995)
$$

$$
\underline{e x} \quad \hat{p}=.40 \quad(.251, .649)
$$

$13-3$
a) $124=?$

b) Checkif CLT applies: $n p \geq 10$ AND $n(1-p) \geq 10$

$$
\begin{array}{cc}
124(.5) \geq 10 & (24(1-.5) \geq 10 \\
62 \geq 10 & 62 \geq 10
\end{array}
$$

CLT says the samp.dist.willbe: $\quad v n$ is large

- approx. normal
mean of $\widehat{p}=.5$
$\mu_{\hat{p}}=.5$
-st. den. of $\widehat{p}=\sigma_{\hat{p}}=\sqrt{\frac{-5(1-.5)}{124}}=.0449$
d) $\hat{p}=\frac{80}{124}=.645$
$\begin{aligned} & \text { e). } 645 \rightarrow \text { very y surprising } \\ & \text { never happened in } 1000 \text { simulations. }\end{aligned}$

g) Yes $\rightarrow .645$ was so unlikely, $p(z$
don't think $p=.5$

$$
\text { don'tank } p=.5
$$

estimate p:

$$
\left.\begin{array}{c}
.645 \pm 2(.0449) \\
,
\end{array}\right)
$$

